Tuesday, October 7, 2014

What is the cost of defects in software testing?

The cost of defects can be measured by the impact of the defects and when we find them. Earlier the defect is found lesser is the cost of defect. For example if error is found in the requirement specifications then it is somewhat cheap to fix it. The correction to the requirement specification can be done and then it can be re-issued. In the same way when defect or error is found in the design then the design can be corrected and it can be re-issued. But if the error is not caught in the specifications and is not found till the user acceptance then the cost to fix those errors or defects will be way too expensive.
If the error is made and the consequent defect is detected in the requirements phase then it is relatively cheap to fix it.
Similarly if an error is made and the consequent defect is found in the design phase then the design can be corrected and reissued with relatively little expense.

cost of defects in software testing 

The same applies for construction phase. If however, a defect is introduced in the requirement specification and it is not detected until acceptance testing or even once the system has been implemented then it will be much more expensive to fix. This is because rework will be needed in the specification and design before changes can be made in construction; because one defect in the requirements may well propagate into several places in the design and code; and because all the testing work done-to that point will need to be repeated in order to reach the confidence level in the software that we require.
It is quite often the case that defects detected at a very late stage, depending on how serious they are, are not corrected because the cost of doing so is too expensive.

What are the principles of testing?

 

Principles of Testing

There are seven principles of testing. They are as follows:
1) Testing shows presence of defects: Testing can show the defects are present, but cannot prove that there are no defects. Even after testing the application or product thoroughly we cannot say that the product is 100% defect free. Testing always reduces the number of undiscovered defects remaining in the software but even if no defects are found, it is not a proof of correctness.
2) Exhaustive testing is impossible: Testing everything including all combinations of inputs and preconditions is not possible. So, instead of doing the exhaustive testing we can use risks and priorities to focus testing efforts. For example: In an application in one screen there are 15 input fields, each having 5 possible values, then to test all the valid combinations you would need 30  517  578  125  (515) tests. This is very unlikely that the project timescales would allow for this number of tests. So, accessing and managing risk is one of the most important activities and reason for testing in any project.
3) Early testing: In the software development life cycle testing activities should start as early as possible and should be focused on defined objectives.
4) Defect clustering: A small number of modules contains most of the defects discovered during pre-release testing or shows the most operational failures.
5) Pesticide paradox: If the same kinds of tests are repeated again and again, eventually the same set of test cases will no longer be able to find any new bugs. To overcome this “Pesticide Paradox”, it is really very important to review the test cases regularly and new and different tests need to be written to exercise different parts of the software or system to potentially find more defects.
6) Testing is context depending: Testing is basically context dependent. Different kinds of sites are tested differently. For example, safety – critical software is tested differently from an e-commerce site.
7) Absence – of – errors fallacy: If the system built is unusable and does not fulfill the user’s needs and expectations then finding and fixing defects does not help.